Package: DeepLearningCausal 0.0.104
Nguyen K. Huynh
DeepLearningCausal: Causal Inference with Super Learner and Deep Neural Networks
Functions to estimate Conditional Average Treatment Effects (CATE) and Population Average Treatment Effects on the Treated (PATT) from experimental or observational data using the Super Learner (SL) ensemble method and Deep neural networks. The package first provides functions to implement meta-learners such as the Single-learner (S-learner) and Two-learner (T-learner) described in Künzel et al. (2019) <doi:10.1073/pnas.1804597116> for estimating the CATE. The S- and T-learner are each estimated using the SL ensemble method and deep neural networks. It then provides functions to implement the Ottoboni and Poulos (2020) <doi:10.1515/jci-2018-0035> PATT-C estimator to obtain the PATT from experimental data with noncompliance by using the SL ensemble method and deep neural networks.
Authors:
DeepLearningCausal_0.0.104.tar.gz
DeepLearningCausal_0.0.104.zip(r-4.5)DeepLearningCausal_0.0.104.zip(r-4.4)DeepLearningCausal_0.0.104.zip(r-4.3)
DeepLearningCausal_0.0.104.tgz(r-4.4-any)DeepLearningCausal_0.0.104.tgz(r-4.3-any)
DeepLearningCausal_0.0.104.tar.gz(r-4.5-noble)DeepLearningCausal_0.0.104.tar.gz(r-4.4-noble)
DeepLearningCausal_0.0.104.tgz(r-4.4-emscripten)DeepLearningCausal_0.0.104.tgz(r-4.3-emscripten)
DeepLearningCausal.pdf |DeepLearningCausal.html✨
DeepLearningCausal/json (API)
# Install 'DeepLearningCausal' in R: |
install.packages('DeepLearningCausal', repos = c('https://hknd23.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/hknd23/deeplearningcausal/issues
- exp_data - Survey Experiment of Support for Populist Policy
- exp_data_full - Survey Experiment of Support for Populist Policy
- pop_data - World Value Survey India Sample
- pop_data_full - World Value Survey India Sample
causal-inferencedeep-neural-networksmachine-learning
Last updated 4 months agofrom:38595976a3. Checks:OK: 1 NOTE: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 04 2024 |
R-4.5-win | NOTE | Nov 04 2024 |
R-4.5-linux | NOTE | Nov 04 2024 |
R-4.4-win | NOTE | Nov 04 2024 |
R-4.4-mac | NOTE | Nov 04 2024 |
R-4.3-win | NOTE | Nov 04 2024 |
R-4.3-mac | NOTE | Nov 04 2024 |
Exports:complier_modcomplier_predictmetalearner_deepneuralmetalearner_ensembleneuralnet_complier_modneuralnet_pattc_counterfactualsneuralnet_predictneuralnet_response_modelpattc_counterfactualspattc_deepneuralpattc_ensembleresponse_model
Dependencies:backportsbase64encbitbit64bitopsbootbroombslibcachemcaretcaToolscheckmateclassclicliprclockclustercodetoolscolorspacecpp11crayoncvAUCdata.tableDerivdiagramdigestdplyre1071evaluatefansifarverfastmapfontawesomeforcatsforeachforeignFormulafsfuturefuture.applygamgbmgdatagenericsggplot2glmnetglobalsgluegowergplotsgridExtragtablegtoolshardhathavenhighrHmischmshtmlTablehtmltoolshtmlwidgetsipredisobanditeratorsjomojquerylibjsonliteKernSmoothknitrlabelinglatticelavalifecyclelistenvlme4lubridatemagrittrMASSMatrixmemoisemgcvmicemimeminqamitmlModelMetricsmunsellneuralnetnlmenloptrnnetnnlsnumDerivordinalpanparallellypillarpkgconfigplyrprettyunitspROCprodlimprogressprogressrproxypurrrR6randomForestrappdirsRColorBrewerRcppRcppEigenreadrrecipesreshape2rlangrmarkdownROCRrpartrstudioapisassscalesshapeSQUAREMstringistringrSuperLearnersurvivaltibbletidyrtidyselecttimechangetimeDatetinytextzdbucminfutf8vctrsviridisviridisLitevroomweightswithrxfunxgboostyaml